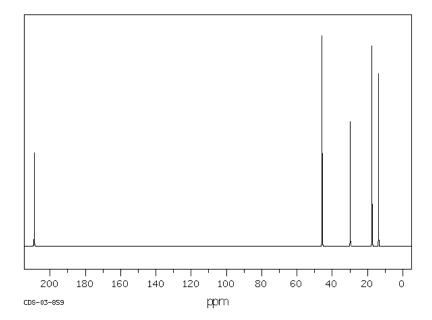
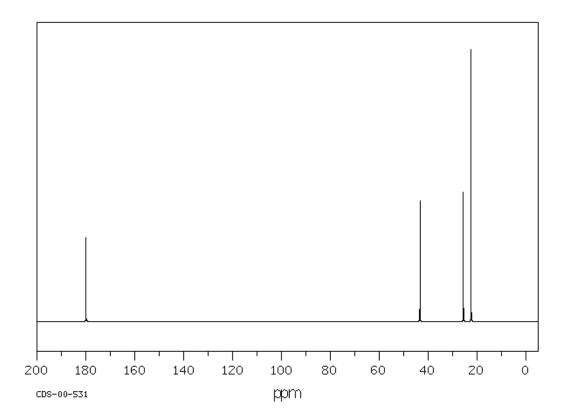

## **TOPIC 20 EXERCISE 2 – CARBON-13 NMR SPECTRA**


- 1. a) Suggest how propanal and propanone could be distinguished from their carbon-13 nmr spectra.
  - b) Suggest how propan-2-ol and propanone could be distinguished from their carbon-13 nmr spectra.
  - c) Predict the number of peaks in the carbon-13 nmr spectrum of:
    - i) butanone
    - ii) pentan-2-one
    - iii) pentan-3-one
- 2. Can you find seven different molecules which could be responsible for the carbon-13 nmr spectrum below? (rmm = 116)




3. Can you identify this molecule (rmm = 74)?



4. Can you find three possible structures for this molecule (rmm = 86)?



5. Can you identify this molecule (rmm = 102)



## **SOLUTIONS**

- 1. a) Propanal has three peaks, propanone has two
  - b) Both have two peaks, one with chemical shift between 0 and 50. However the second peak in propanone will have a chemical shift at 160 220, but the second peak in propan-2-ol will have a chemical shift at 50 90
  - c) i) 4 ii) 5 iii) 3
- 2. Peak at 60 ppm C-O and peak at 160 ppm O=C-O so ester is most likely  $C_nH_{2n}O_2 = 116$  so n = 6

Five peaks so two C atoms are in identical environments, likely -C(CH<sub>3</sub>)<sub>2</sub> HCOOCH<sub>2</sub>CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub> or HCOOCH(CH<sub>3</sub>)CH(CH<sub>3</sub>)<sub>2</sub> or CH<sub>3</sub>COOCH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub> or CH<sub>3</sub>COOCH(CH<sub>3</sub>)<sub>2</sub> or (CH<sub>3</sub>)<sub>2</sub>CHCOOCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> or (CH<sub>3</sub>)<sub>2</sub>CHCOOCH<sub>2</sub>CH<sub>3</sub> or (CH<sub>3</sub>)<sub>2</sub>CHCOOCH<sub>3</sub>

- 3. Peak at 60 ppm C-O so alcohol is most likely  $C_nH_{2n+2}O=74$  so n=4 Two peaks so three C atoms are in identical environments, likely -(CH<sub>3</sub>)<sub>3</sub> (CH<sub>3</sub>)<sub>3</sub>COH
- 4. Peak at 210 ppm = C=O so carbonyl most likely  $C_nH_{2n}O = 84$  so n = 5 Five peaks so no C atoms in identical environments  $CH_3CH_2CH_2CHO$  or  $CH_3CH_2CH(CH_3)CHO$  or  $CH_3CH_2CH_2COCH_3$
- 5. Peak at 180 ppm = O=C-O so carboxylic acid most likely  $C_nH_{2n}O_2 = 102$  so n = 5 Four peaks so two C atoms in identical environments, likely -C(CH<sub>3</sub>)<sub>2</sub> (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>COOH